Minimum–Delay Opportunity Charging Scheduling for Electric Buses
Artikel i vetenskaplig tidskrift, 2025
the model’s logic-based “big M” constraints and their inevitable computational challenges. The second, inspired by the CB approach but more efficient, is a polynomial-time heuristic based on linear programming that we call 3S. Computational experiments on both a simple notional transit network and the real bus system of King County, Washington, USA demonstrate the performance of both methods. The 3S method appears particularly promising for creating good charging schedules quickly at real-world scale.
layover charging
transport
opportunity charging
battery-electric bus
combinatorial Benders decomposition
heuristics
Författare
Dan McCabe
University of Washington
Xuegang (Jeff) Ban
University of Washington
Balázs Adam Kulcsár
Chalmers, Elektroteknik, System- och reglerteknik
Communications in Transportation Research
27724247 (eISSN)
LEAR: Robust LEArning methods for electric vehicle Route selection
Swedish Electromobility Centre, 2023-01-01 -- 2026-12-31.
ERGODIC: Kombinerade person- och godstransporter i förortstrafik
VINNOVA (ERGODIC), 2023-10-01 -- 2026-09-30.
Europeiska kommissionen (EU) (F-DUT-2022-0078), 2023-10-01 -- 2026-09-30.
Europeiska kommissionen (EU) (F-ENUAC-2022-0003), 2023-10-01 -- 2026-09-30.
Styrkeområden
Transport
Ämneskategorier (SSIF 2025)
Transportteknik och logistik
Beräkningsmatematik
Reglerteknik