Efficient and intelligent resource allocation in optical networks
Doktorsavhandling, 2025
To optimize resource utilization while maintaining network flexibility, the thesis studies programmable filterless optical networks (PFONs), an architecture that replaces conventional reconfigurable optical add-drop multiplexers with programmable optical white box switches. The routing, modulation format, and spectrum assignment problem in PFONs is formulated as an integer linear program aimed at minimizing spectrum and passive optical component usage. Simulation results show a 54% reduction in spectrum dissipation compared to passive filterlessoptical networks, while also achieving greater cost efficiency over conventional wavelength-switched optical networks.
A significant obstacle to efficient resource usage in dynamic single- and multi-band EONs is spectrum fragmentation (SF), where arrivals and departures of service requests leave stranded, unusable gaps in the available spectrum. To alleviate SF, we introduce DeepDefrag, a novel deep reinforcement learning-based framework designed to address spectrum defragmentation (SD) challenges. DeepDefrag dynamically determines appropriate timing for SD, selects connections to be reconfigured, and identifies suitable parts of the spectrum for reallocation. Through intelligent decision-making, DeepDefragoutperforms traditional heuristic algorithms, such as the older first-fit algorithm, by achieving a lower service blocking ratio (SBR) andminimizing the control overhead associated with SD.
To further extend resource management to multi-band EONs, where different achievable quality of transmission (QoT) levels across different bands exacerbate fragmentation, the thesis proposes a fragmentation- and QoT-aware routing, band, modulation format, and spectrum assignment algorithm. The approach integrates proactive SD and traffic re-grooming to improve spectral efficiency. Simulations on three network topologies demonstrate a significant reduction in both SBR andspectrum fragmentation compared to QoT-only benchmarks, albeit with a slight increase in the average path length.
Författare
Ehsan Etezadi
Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk
Joint Fragmentation- and QoT-Aware RBMSA in Dynamic Multi-Band Elastic Optical Networks
International Conference on Transparent Optical Networks,;Vol. 2024-July(2024)
Paper i proceeding
Programmable Filterless Optical Networks: Architecture, Design and Resource Allocation
IEEE/ACM Transactions on Networking,;Vol. 32(2024)p. 1096-1109
Artikel i vetenskaplig tidskrift
Deep reinforcement learning for proactive spectrum defragmentation in elastic optical networks [Invited]
Journal of Optical Communications and Networking,;Vol. 15(2023)p. E86-E96
Artikel i vetenskaplig tidskrift
Demonstration of DRL-based intelligent spectrum management over a T-API-enabled optical network digital twin
IET Conference Proceedings,;Vol. 2023(2023)p. 1730-1733
Artikel i vetenskaplig tidskrift
DeepDefrag: A deep reinforcement learning framework for spectrum defragmentation
2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings,;(2022)p. 3694-3699
Paper i proceeding
Styrkeområden
Informations- och kommunikationsteknik
Ämneskategorier (SSIF 2025)
Kommunikationssystem
Telekommunikation
Datorsystem
Infrastruktur
C3SE (-2020, Chalmers Centre for Computational Science and Engineering)
ISBN
978-91-8103-213-0
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5671
Utgivare
Chalmers
Room EA, Hörslasvägen 11, Chalmers University of Technology