Absolutely Dilatable Bimodule Maps
Artikel i vetenskaplig tidskrift, 2025

We characterise absolutely dilatable completely positive maps on the space of all bounded operators on a Hilbert space that are also bimodular over a given von Neumann algebra as rotations by a suitable unitary on a larger Hilbert space followed by slicing along the trace of an additional ancilla. We define the local, quantum, and approximately quantum types of absolutely dilatable maps, according to the type of the admissible ancilla. We show that the local absolutely dilatable maps admit an exact factorisation through an abelian ancilla and show that they are limits in the point weak* topology of conjugations by unitaries in the commutant of the given von Neumann algebra. We show that the Connes Embedding Problem is equivalent to deciding if all absolutely dilatable maps are approximately quantum.

Författare

Alexandros Chatzinikolaou

University of Athens

I. G. Todorov

University of Delaware

Lyudmyla Turowska

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

International Mathematics Research Notices

1073-7928 (ISSN) 1687-0247 (eISSN)

Vol. 2025 12

Icke-kommutativanalys för kvantberäkningar

Vetenskapsrådet (VR) (2023-04555), 2024-01-01 -- 2027-12-31.

Ämneskategorier (SSIF 2025)

Algebra och logik

DOI

10.1093/imrn/rnaf160

Mer information

Senast uppdaterat

2025-07-10