Smart sensing breaks the accuracy barrier in battery state monitoring
Artikel i vetenskaplig tidskrift, 2025

Accurate state-of-charge (SOC) estimation is essential for optimizing battery performance, ensuring safety, and maximizing economic value. Conventional current and voltage measurements, however, have inherent limitations in fully inferring the multiphysics-resolved dynamics inside battery cells. This creates an accuracy barrier that constrains battery usage and reduces cost-competitiveness and sustainability, across industries dependent on battery technology. In this work, we introduce an integrated sensor framework that combines novel mechanical, thermal, gas, optical, and electrical sensors with traditional measurements to break through this barrier. We generate three unique datasets with eleven measurement types and propose an explainable machine-learning approach for SOC estimation. This approach renders the measured signals and the predictive result of machine learning physically interpretable with respect to battery SOC, offering fundamental insights into the time-varying importance of different signals. Our experimental results reveal a marked increase in SOC estimation accuracy – enhanced from 46.1% to 74.5% – compared to conventional methods. This approach not only advances SOC monitoring precision but also establishes a foundation for monitoring additional battery states to further improve safety, extend lifespan, and facilitate fast charging.

Battery

Explainable machine-learning

State Estimation

Sensor-fusion

Författare

Xiaolei Bian

Chalmers, Elektroteknik, System- och reglerteknik

Changfu Zou

Chalmers, Elektroteknik, System- och reglerteknik

B. Fridholm

Volvo Group

Christian Sundvall

NOVO Energy

Torsten Wik

Chalmers, Elektroteknik, System- och reglerteknik

Energy Storage Materials

2405-8297 (eISSN)

Vol. 80 104410

Batteristyrning via adaptiv modellering och prediktiv reglering

Vetenskapsrådet (VR) (2019-04873), 2020-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2025)

Annan elektroteknik och elektronik

Energiteknik

Signalbehandling

DOI

10.1016/j.ensm.2025.104410

Mer information

Senast uppdaterat

2025-07-16