Probabilistic GOSPA: A metric for performance evaluation of multi-object filters with uncertainties
Artikel i vetenskaplig tidskrift, 2025

This correspondence presents a probabilistic generalization of the generalized optimal subpattern assignment (GOSPA) metric, termed P-GOSPA. The GOSPA metric has been widely used to evaluate the distance between finite sets, particularly in multiobject estimation applications. The P-GOSPA extends GOSPA into the space of multiBernoulli densities, incorporating inherent uncertainty in probabilistic multiobject representations. In addition, P-GOSPA retains the interpretability of GOSPA, such as its decomposition into localization, missed detection, and false detection errors in a sound and meaningful manner. Examples and simulations are provided to demonstrate the efficacy of the proposed P-GOSPA metric.

Wasserstein distance

point process

performance evaluation

multiobject estimation

MultiBernoulli (MB) process

Författare

Yuxuan Xia

Shanghai Jiao Tong University

Angel Garcia

Universidad Politecnica de Madrid

Johan Karlsson

Kungliga Tekniska Högskolan (KTH)

Kuo Chu Chang

George Mason University

Ting Yuan

Shanghai Jiao Tong University

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

IEEE Transactions on Aerospace and Electronic Systems

0018-9251 (ISSN) 15579603 (eISSN)

Vol. 61 5 15113-15121 0b000064941f402d

Ämneskategorier (SSIF 2025)

Reglerteknik

DOI

10.1109/TAES.2025.3580523

Mer information

Senast uppdaterat

2025-11-01