A transferable physics-informed framework for battery degradation diagnosis, knee-onset detection and knee prediction
Artikel i vetenskaplig tidskrift, 2025

The techno-economic and safety concerns of battery capacity knee occurrence call for developing online knee detection and prediction methods as an advanced battery management system (BMS) function. To address this, a transferable physics-informed framework that consists of a histogram-based feature engineering method, a hybrid physics-informed model, and a fine-tuning strategy, is proposed for online battery degradation diagnosis and knee-onset detection. The hybrid model is first developed and evaluated using a scenario-aware pipeline in protocol cycling scenarios and then fine-tuned to create local models deployed in a dynamic cycling scenario. A 2D histogram-based 17-feature set is found to be the best choice in both source and target scenarios. The fine-tuning strategy is proven to be effective in improving battery degradation mode estimation and degradation phase detection performance in the target scenario. Again, a strong linear correlation was found between the identified knee-onset and knee points. As a result, advanced BMS functions, such as online degradation diagnosis and prognosis, online knee-onset detection and knee prediction, aging-aware battery classification, and second-life repurposing, can be enabled through a battery performance digital twin in the cloud.

Battery diagnosis

Physics-informed neural networks

Knee-onset detection

Degradation pathways

Författare

Huang Zhang

Volvo Group

Chalmers, Elektroteknik, System- och reglerteknik

Xixi Liu

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Faisal Altaf

Volvo Group

Torsten Wik

Chalmers, Elektroteknik, System- och reglerteknik

Journal of Power Sources

0378-7753 (ISSN)

Vol. 657 238028

Batteriåldringsmedvetet tekno-ekonomiskt beslutsstöd för optimal användning av fordonsbatterier över hela deras livslängd

Energimyndigheten, 2024-07-01 -- 2025-12-31.

Energimyndigheten (P2024-00998), 2024-07-01 -- 2025-12-31.

Ämneskategorier (SSIF 2025)

Robotik och automation

Annan samhällsbyggnadsteknik

DOI

10.1016/j.jpowsour.2025.238028

Mer information

Senast uppdaterat

2025-08-27