Towards Accurate RISC-V Full System Simulation via Component-Level Calibration
Artikel i vetenskaplig tidskrift, 2025

Full-System (FS) simulation is essential for performance evaluation of complete systems that execute complex applications on a complete software stack consisting of an operating system and user applications. Nevertheless, they require careful fine-tuning against real hardware to obtain reliable performance statistics, which can become tedious, error-prone, and time-consuming with typical trial-and-error approaches. We propose a novel, streamlined, component-level calibration methodology to address these shortcomings to validate FS simulation models. Our methodology greatly accelerates the validation process without sacrificing accuracy. It is Instruction Set Architecture (ISA)-agnostic, and can tackle hardware specifications at different levels of detail. We demonstrate its effectiveness by validating FS models against both open-hardware and IP-protected (closed hardware) RISC-V silicon, achieving a mean error of 19%-23% for the SPEC CPU2017 suite in the two cases. We introduce the first open-source RISC-V-based FS-validated simulation models with a complete and replicable methodology.

full-system (FS) simulation

performance validation

Architectural simulator

Författare

Karan Pathak

Ecole Polytechnique Federale de Lausanne (EPFL)

HEIG-VD

TU Delft

Joshua Klein

Ecole Polytechnique Federale de Lausanne (EPFL)

Giovanni Ansaloni

Ecole Polytechnique Federale de Lausanne (EPFL)

Said Hamdioui

TU Delft

Georgi Gaydadjiev

TU Delft

Göteborgs universitet

Chalmers, Data- och informationsteknik, Datorteknik

Marina Zapater

Ecole Polytechnique Federale de Lausanne (EPFL)

HEIG-VD

David Atienza

Ecole Polytechnique Federale de Lausanne (EPFL)

Transactions on Embedded Computing Systems

1539-9087 (ISSN) 15583465 (eISSN)

Vol. 24 4 57

Ämneskategorier (SSIF 2025)

Datorsystem

DOI

10.1145/3737876

Mer information

Senast uppdaterat

2025-11-03