Simulation study of the performance of neural network-enhanced PACBED for characterizing atomic-scale deformations in 2D van der Waals materials
Artikel i vetenskaplig tidskrift, 2026

Two dimensional (2D) van der Waals (vdW) materials have attractive mechanical, electronic, optical, and catalytic properties that are highly tunable especially when they are thin. However, they are rarely perfect and flat, and their properties are strongly influenced by local crystal lattice deformations that include the 2D strain tensor, in-plane rotation and corrugation, where the latter is manifested as local sample tilt. Therefore, to gain more control over their properties, a detailed understanding of these deformations is needed. Position averaged convergent beam electron diffraction (PACBED) is a powerful technique for providing information about local atomic structure. In this work, we perform a comprehensive simulation study of the performance of PACBED in combination with convolutional neural networks (CNNs) for prediction of deformations of 2D materials. We generate around 100,000 simulated PACBED patterns from 2H MoS2 for thicknesses from 1 to 20 atomic layers where strain, rotation, and tilt parameters are varied. Five convergence angles are explored which vary from conventional nano beam electron diffraction (6.35 mrad) to atomic resolution conditions (32.94 mrad). From this simulated PACBED library, we train regression CNNs to simultaneously predict the 2D strain tensor, in-plane rotation, and tilt of the sample. For different convergence angles and thicknesses, we study the prediction performance for each of the deformation parameters. We find that there is a trade-off between better prediction performance (small convergence angles) and probe size (large convergence angles). For smaller convergence angles like those used for conventional NBED conditions, the strain prediction error can be as low as 0.0003 %, while for larger convergence angles like those used for atomic resolution probes, the strain error increases to 0.001 - 0.003 %. The impressive prediction performance even for large convergence angles suggests that PACBED combined with CNNs is a feasible method for predicting deformation parameters using atomic resolution electron probes. Further, we conclude that the prediction can be difficult for monolayers, and suggest two remedies: excluding tilt from the predictions and performing nonlinear intensity rescaling of the training data. This work contributes to the optimal design of PACBED experiments for characterization of local crystal deformations and, therefore, to an improved understanding of how 2D vdW materials respond to imperfections.

2D materials

Convolutional neural networks

Position averaged convergent beam electron diffraction

Machine learning

Strain

Van der Waals materials

Författare

Andrew Yankovich

Chalmers, Fysik, Nano- och biofysik

Magnus Röding

AstraZeneca AB

Göteborgs universitet

RISE Research Institutes of Sweden

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Ultramicroscopy

0304-3991 (ISSN) 1879-2723 (eISSN)

Vol. 279 114246

Accelererad design och utveckling av porösa material med statistik och maskininlärning

Vetenskapsrådet (VR) (VR2023-04248), 2025-01-01 -- 2027-12-31.

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

ARTEMI - en Nationell Forskningsinfrastruktur för Elektronmikroskopi

Vetenskapsrådet (VR) (2021-00171), 2022-01-01 -- 2026-12-31.

Stiftelsen för Strategisk forskning (SSF) (RIF21-0026), 2022-09-01 -- 2027-12-31.

Visualisering av stark växelverkan mellan ljus och materia genom NEX-GEN-STEM

Vetenskapsrådet (VR) (2020-04986), 2021-01-01 -- 2024-12-31.

Ämneskategorier (SSIF 2025)

Den kondenserade materiens fysik

DOI

10.1016/j.ultramic.2025.114246

PubMed

41115390

Mer information

Senast uppdaterat

2025-10-24