End-to-End Learning for RIS Profile Design and Channel Parameter Estimation under Pixel Failures
Paper i proceeding, 2025

Reconfigurable intelligent surfaces (RISs) have emerged as a transformative technology for sixth-generation (6 G) communication networks, offering the ability to dynamically shape wireless propagation environments and thus efficiently enhance received signal quality. However, practical implementation of RIS faces challenges, including potential failures of individual elements (pixels), which can degrade the performance significantly. This paper leverages autoencoders and end-to-end (E2E) learning in RIS-aided systems to jointly optimize the RIS phase profiles and receiver angle-of-departure (AoD) estimation in the presence of pixel failures. The proposed E2E approach demonstrates resilience against practical pixel errors while is shown to achieve performance close to the fundamental bounds, thereby advancing the state-of-the-art in RIS-aided systems towards the 6 G era.

6G

hardware impairments

mmWave positioning

end-to-end learning

RIS profile design

Författare

Mehmet C. Ilter

Tampereen Yliopisto

Musa Furkan Keskin

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

José Miguel Mateos Ramos

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Christian Häger

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

M. Valkama

Tampereen Yliopisto

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

IEEE Vehicular Technology Conference

15502252 (ISSN)


9798331531478 (ISBN)

101st IEEE Vehicular Technology Conference, VTC 2025-Spring 2025
Oslo, Norway,

Lokalisering och avkänning för perceptiva cellfria nätverk mot 6G

Vetenskapsrådet (VR) (2024-04390), 2025-01-01 -- 2028-12-31.

SAICOM

Stiftelsen för Strategisk forskning (SSF) (FUS21-0004), 2022-06-01 -- 2027-05-31.

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Telekommunikation

Signalbehandling

DOI

10.1109/VTC2025-Spring65109.2025.11174809

Mer information

Senast uppdaterat

2025-11-06