Lifelong Reinforcement Learning for Health-Aware Fast Charging of Lithium-ion Batteries
Artikel i vetenskaplig tidskrift, 2025

Fast charging of lithium-ion batteries remains a critical bottleneck for widespread adoption of electric vehicles and stationary energy storage systems, as improperly designed fast charging can accelerate battery degradation and shorten lifespan. In this work, we address this challenge by proposing a health-aware fast charging strategy that explicitly balances charging speed and battery longevity across the entire service life. The key innovation lies in establishing a mapping between side-reaction overpotential and the state of health (SoH) of battery, which is then used to constrain the terminal charging voltage in a twin delayed deep deterministic policy gradient (TD3) framework. By incorporating this SoH-dependent voltage constraint, our designed deep learning method mitigates side reactions and effectively extends battery life. To validate the proposed approach, a high-fidelity single particle model with electrolyte is implemented in the widely adopted PyBaMM simulation platform, capturing degradation phenomena at realistic scales. Comparative life-cycle simulations against conventional CC-CV, its variants, and constant current–constant overpotential methods show that the TD3-based controller reduces overall degradation while maintaining competitively fast charge times. These results demonstrate the practical viability of deep reinforcement learning for advanced battery management systems and pave the way for future explorations of health-aware, performance-optimized charging strategies.

Lithium-ion battery

reinforcement learning

fast charging

battery degradation.

Författare

Meng Yuan

Chalmers, Elektroteknik, System- och reglerteknik

Changfu Zou

Chalmers, Elektroteknik, System- och reglerteknik

IEEE Transactions on Transportation Electrification

2332-7782 (eISSN)

Vol. 1

Integrering av förstärkningsinlärning och prediktiv styrning för energihantering i smarta hem (SmartHEM)

Europeiska kommissionen (EU) (EC/HE/101110832), 2023-10-10 -- 2025-10-09.

Europeiska kommissionen (EU) (EC/HE/101110832), 2023-12-01 -- 2025-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Energi

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Infrastruktur

C3SE (-2020, Chalmers Centre for Computational Science and Engineering)

Ämneskategorier (SSIF 2025)

Energiteknik

Energisystem

Reglerteknik

DOI

10.1109/TTE.2025.3625421

Mer information

Skapat

2025-10-27