Defect engineering in BiVO4 photoanodes: the synergistic role of nitrogen doping and oxygen vacancy for oxygen evolution reaction
Artikel i vetenskaplig tidskrift, 2025

Bismuth vanadate (BiVO4) is one of the most promising photoanode materials for water splitting, yet its intrinsic oxygen evolution reaction (OER) performance is limited. Here, we employ hybrid density functional theory calculations to investigate the synergistic effects of nitrogen doping and oxygen vacancy formation on BiVO4 for the OER. We analyze two OER mechanisms, the traditional single-site adsorption evolution mechanism (AEM) and the dual-site bridging mechanism (DSBM), to understand the enhanced catalytic activity observed experimentally. Our results show that nitrogen doping on the surface, combined with the creation of a vanadium active site through oxygen vacancy, significantly reduces the OER overpotential from 1.44 V in pristine BiVO4 to 0.93 V (AEM) and 1.16 V (DSBM). Besides, the nitrogen dopants on the surface alter the local acid-base chemistry: proton adsorption on nitrogen becomes 0.52 eV more favorable than on oxygen, and water dissociation is 0.31 eV easier at the V site than at the Bi site. By offering low-energy proton-binding sites, nitrogen stabilizes key intermediates and favors formation of a stable O–O dimer, producing a pronounced reduction in overpotential. These findings highlight that the effective defect engineering strategies can significantly enhance the overall performance of BiVO4- based photoanodes in operational photoelectrochemical systems.

photoelectrochemical (PEC) water splitting

density functional theory (DFT)

oxygen evolution reaction (OER)

Författare

Qiuhua Liang

Chalmers, Fysik, Kondenserad materie- och materialteori

Hassan Ouhbi

Chalmers, Fysik, Kondenserad materie- och materialteori

Nicklas Österbacka

Chalmers, Fysik, Kondenserad materie- och materialteori

Francesco Ambrosio

Universita degli Studi della Basilicata

Julia Wiktor

Chalmers, Fysik, Kondenserad materie- och materialteori

JPhys Energy

2515-7655 (eISSN)

Vol. 7 4 045030

Harnessing Localized Charges for Advancing Polar Materials Engineering (POLARISE)

Europeiska kommissionen (EU) (EC/HE/101162195), 2025-01-01 -- 2029-12-31.

Atomistisk design av fotoadsorberande material

Vetenskapsrådet (VR) (2019-03993), 2020-01-01 -- 2023-12-31.

Ämneskategorier (SSIF 2025)

Materialkemi

Teoretisk kemi

Oorganisk kemi

DOI

10.1088/2515-7655/ae1061

Mer information

Senast uppdaterat

2025-10-31