A practical guide to the implementation of artificial intelligence in orthopaedic research—Part 3: How orthopaedic research benefits from the implementation of artificial intelligence
Reviewartikel, 2025

Artificial intelligence (AI) encompasses the development of systems that can perform human-like tasks, such as treatment guidance, decision-making, pattern recognition and understanding language. Within AI, machine learning and deep learning play pivotal roles in diagnosis and outcome prediction, while natural language processing aids in synthesising large datasets from the electronic medical record. In orthopaedics, AI has demonstrated success in various areas, including image evaluation, surgical planning, outcome prediction, cohort identification and administrative tasks. The purpose of this manuscript was to provide an overview of the benefits of AI implementation within the field of orthopaedics. An additional goal was to address the challenges associated with producing high quality AI-based research in a rapidly developing field. Level of Evidence: Level IV.

sports medicine

orthopaedics

research methods

artificial intelligence

machine learning

Författare

James Pruneski

Tripler Army Medical Center

Ayoosh Pareek

Hospital for Special Surgery - New York

Bálint Zsidai

Skånes universitetssjukhus (SUS)

Göteborgs universitet

Sahlgrenska universitetssjukhuset

Jacob F. Oeding

Göteborgs universitet

Mayo Clinic

Jonathan D. Hughes

UPMC Sports Medicine

Felix C. Oettl

Universität Zürich

Philipp W. Winkler

Johannes Kepler Universität Linz (JKU)

Thomas Tischer

Universitymedicine Rostock

Malteser Waldkrankenhaus Erlangen

Elmar Herbst

University Hospital Muenster

Alberto Grassi

IRCCS Istituto Ortopedico Rizzoli, Bologna

Michael T. Hirschmann

Universität Basel

Kantonsspital Baselland

Christophe Ley

Université du Luxembourg

Yinan Yu

Göteborgs universitet

Chalmers, Data- och informationsteknik, Funktionell programmering

Kristian Samuelsson

Göteborgs universitet

Sahlgrenska universitetssjukhuset

Journal of Experimental Orthopaedics

2197-1153 (eISSN)

Vol. 12 4 e70481

Ämneskategorier (SSIF 2025)

Ortopedi

DOI

10.1002/jeo2.70481

PubMed

41180563

Mer information

Senast uppdaterat

2025-11-20