MVUDA: Unsupervised Domain Adaptation for Multi-view Pedestrian Detection
Artikel i vetenskaplig tidskrift, 2026

We address multi-view pedestrian detection in a setting where labeled data is collected using a multi-camera setup different from the one used for testing. While recent multi-view pedestrian detectors perform well on the camera rig used for training, their performance declines when applied to a different setup. To facilitate seamless deployment across varied camera rigs, we propose an unsupervised domain adaptation (UDA) method that adapts the model to new rigs without requiring additional labeled data. Specifically, we leverage the mean teacher self-training framework with a novel pseudo-labeling technique tailored to multi-view pedestrian detection. This method achieves state-of-the-art performance on multiple benchmarks, including MultiviewXWildtrack. Unlike previous methods, our approach eliminates the need for external labeled monocular datasets, thereby reducing reliance on labeled data. Extensive evaluations demonstrate the effectiveness of our method and validate key design choices. By enabling robust adaptation across camera setups, our work enhances the practicality of multi-view pedestrian detectors and establishes a strong UDA baseline for future research.

Pseudo-labeling

Multi-view object detection

Self-training

Unsupervised domain adaptation

Författare

Erik Brorsson

Volvo Group

Chalmers, Elektroteknik, System- och reglerteknik

Lennart Svensson

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Kristofer Bengtsson

Volvo Group

Knut Åkesson

Chalmers, Elektroteknik, System- och reglerteknik

Machine Vision and Applications

0932-8092 (ISSN) 1432-1769 (eISSN)

Vol. 37 1 6

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datorgrafik och datorseende

Datorsystem

DOI

10.1007/s00138-025-01764-y

Mer information

Senast uppdaterat

2025-12-01