Learning to Make Decisions for Autonomous Drug Design
Doktorsavhandling, 2025
To experimentally test a molecule's properties, it must first be synthesized through a sequence of chemical reactions to obtain the desired product. Machine learning can identify and validate suitable chemical reactions by predicting reaction outcomes, but this approach requires sufficient data for each reaction type of interest. This thesis presents work that combinatorially investigates different aspects of active learning to improve predictive capabilities for determining whether a reaction will produce a sufficient amount of product. In practice, only a limited number of molecules can be synthesized per design cycle due to cost and time constraints, whereas current generative models can produce numerous molecular candidates. Therefore, another work in this thesis investigates how to optimally select which generated molecules to test, given a constrained experimental budget. We formulate this challenge as a multi-armed bandit problem and propose a novel algorithm to address it.
To generate novel molecules with desired predicted properties, previous research has successfully employed reinforcement learning to align generative model outputs to a specific biological target. This thesis examines additional perspectives on applying reinforcement learning to sequentially utilize and collect target-specific data. We present a systematic comparison of various reinforcement learning algorithms for generating drug molecules and investigate methods for effectively learning from generated samples. Moreover, designing a diverse set of promising molecules is crucial for a successful drug discovery pipeline. Therefore, we propose new methods to enhance chemical exploration by adaptively modifying the reward signal. We also introduce a mini-batch diversification framework for on-policy reinforcement learning and apply it to molecular generation, thereby improving chemical exploration during the generative process. Together, these contributions advance sequential decision-making in drug design by optimizing the acquisition of new data.
active learning
de novo drug design
reinforcement learning
reaction yield prediction
chemical exploration
multi-armed bandits
Författare
Hampus Gummesson Svensson
Chalmers, Data- och informationsteknik, Data Science och AI
Using Active Learning to Develop Machine Learning Models for Reaction Yield Prediction
Molecular Informatics,;Vol. 41(2022)
Artikel i vetenskaplig tidskrift
Autonomous Drug Design with Multi-Armed Bandits
Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022,;(2022)p. 5584-5592
Paper i proceeding
Utilizing reinforcement learning for de novo drug design
Machine Learning,;Vol. 113(2024)p. 4811-4843
Artikel i vetenskaplig tidskrift
Diversity-Aware Reinforcement Learning for de novo Drug Design
IJCAI International Joint Conference on Artificial Intelligence,;(2025)p. 9194-9204
Paper i proceeding
Att skapa ett nytt läkemedel är som att leta efter en nål i en höstack – det tar ofta 10-15 år och kostar miljarder kronor. Den bistra sanningen är också att 9 av 10 läkemedelskandidater misslyckas längs vägen, trots stora investeringar. Därför är det avgörande att fatta rätt beslut tidigt i processen. Artificiell intelligens (AI) har blivit ett viktigt verktyg för att skapa nya läkemedel. AI kan analysera stora mängder av existerande data och föreslå vilka kemiska strukturer som har bäst chans att bli framgångsrika läkemedel. Men AI är inte bättre än den data den har tillgång till och att samla in ny, högkvalitativ data är både dyrt och tidskrävande. Därför måste forskarna vara strategiska och noggrant välja den data som behövs för att förbättra AI:s tillförlitlighet. Den här avhandlingen handlar om att utveckla smarta system som kan avgöra vilken data som behöver samlas in härnäst. Målet är att skapa autonoma system som effektivare kan designa läkemedel, vilket skulle kunna förkorta utvecklingstiden drastiskt. Föreställ dig en framtid där AI-system arbetar dygnet runt för att hitta botemedel mot cancer, alzheimer eller andra sjukdomar – mycket snabbare än vad som idag är möjligt.
Creating a new medicine is one of the most challenging puzzles in science. It typically takes 10-15 years and costs a billion dollars, with a heartbreaking reality: 9 out of 10 potential medicines fail somewhere along the journey, despite massive investments. This makes grounded decision-making absolutely critical from day one. Artificial Intelligence (AI) has emerged as a crucial tool in the hunt for new medicines. AI can sift through vast amounts of existing data and predict which chemical compounds are most likely to become successful treatments. However, AI is only as good as the data it learns from, and gathering high-quality experimental data is both expensive and time-intensive. This creates a crucial dilemma: researchers must carefully choose which experiments to run next to improve the accuracy and reliability of their AI systems. This research focuses on developing intelligent systems that can determine which data to collect next. The goal is autonomous discovery platforms that can design medicines, potentially cutting development time dramatically. Imagine a future where AI systems work around the clock to discover treatments for cancer, Alzheimer's, or other diseases—delivering them to patients faster.
Styrkeområden
Informations- och kommunikationsteknik
Ämneskategorier (SSIF 2025)
Bioinformatik (beräkningsbiologi)
Datavetenskap (datalogi)
Infrastruktur
Chalmers e-Commons (inkl. C3SE, 2020-)
DOI
10.63959/chalmers.dt/5792
ISBN
978-91-8103-335-9
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5792
Utgivare
Chalmers