Stochastic Conformal Integrators for Linearly Damped Stochastic Poisson Systems
Artikel i vetenskaplig tidskrift, 2026

We propose and study conformal integrators for linearly damped stochastic Poisson systems. We analyse the qualitative and quantitative properties of these numerical integrators: preservation of dynamics of certain Casimir and Hamiltonian functions, almost sure bounds of the numerical solutions, and strong and weak rates of convergence under appropriate conditions. These theoretical results are illustrated with several numerical experiments on, for example, the linearly damped free rigid body with random inertia tensor or the linearly damped stochastic Lotka–Volterra system.

Strong and weak convergence

Casimir and Hamiltonian functions

Stochastic conformal integrator

Linearly damped stochastic Poisson systems

Stochastic differential equations

Geometric numerical integration

Författare

Charles-Edouard Bréhier

Universite de Pau et des Pays de L'Adour

David Cohen

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

Yoshio Komori

Kyushu Institute of Technology

Journal of Scientific Computing

0885-7474 (ISSN) 1573-7691 (eISSN)

Vol. 106 1 17

Time-Evolving Stochastic Manifolds (StochMan)

Europeiska kommissionen (EU) (EC/HE/101088589), 2023-09-01 -- 2028-08-31.

Ämneskategorier (SSIF 2025)

Annan maskinteknik

Beräkningsmatematik

Signalbehandling

Infrastruktur

Chalmers e-Commons (inkl. C3SE, 2020-)

DOI

10.1007/s10915-025-03097-4

Mer information

Senast uppdaterat

2025-12-12