A practical guide to the implementation of AI in orthopaedic research-Part 5: Data management
Reviewartikel, 2025

While the magnitude and types of data available to orthopaedic researchers are steadily growing, standardized and efficient data management workflows for orthopaedic research using artificial intelligence (AI) are currently lacking. This work introduces essential principles and best practices for planning, collecting, storing, processing, labelling and governing data in AI-based orthopaedic research. The various domains of available data quality guidelines for medical AI research are reviewed and discussed in terms of their adaptability to orthopaedic research datasets. In addition, future areas of improvement, such as registry development, the potential of synthetic data and gradual transition to continuous data streams for AI applications, are outlined.Level of Evidence Level V.

methods

machine learning

causal inference

data analysis

artificial intelligence

Författare

Balint Zsidai

Göteborgs universitet

Felix Oettl

Universität Zürich

James A. Pruneski

Tripler Army Medical Center

Gergely Panics

FIFA Medical Centre of Excellence (FMCE)

Semmelweis Egyetem

Philipp W. Winkler

Göteborgs universitet

Eric Hamrin Senorski

Göteborgs universitet

Michael T. Hirschmann

Kantonsspital Baselland

Yinan Yu

Chalmers, Data- och informationsteknik, Funktionell programmering

Robert Feldt

Chalmers, Data- och informationsteknik, Software Engineering

Kristian Samuelsson

Göteborgs universitet

Journal of Experimental Orthopaedics

2197-1153 (eISSN)

Vol. 12 4 e70581

Ämneskategorier (SSIF 2025)

Ortopedi

Artificiell intelligens

DOI

10.1002/jeo2.70581

PubMed

41416245

Mer information

Senast uppdaterat

2026-01-15