Optimal Reduced Rank Modeling for General Noise Using Nullspace Estimation
Paper i proceeding, 2025

The problem of optimal reconstruction of a lowrank matrix subject to additive noise of arbitrary noise color is addressed. We propose a non-iterative method based on modeling the nullspace of the data. The proposed technique is shown to yield statistically efficient estimates at sufficiently high Signal-to-Noise Ratio. Yet, the computational complexity is significantly reduced compared to existing methods. The empirical efficiency is verified using simulated data. In more difficult scenarios, the proposed NullSpace Estimator (NSE) can be used to initialize an iterative approach, and in the studied cases just one iteration of Alternating Least-Squares (ALS) was found enough.

Författare

Mats Viberg

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Tomas McKelvey

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

European Signal Processing Conference

22195491 (ISSN)

2722-2726

33rd European Signal Processing Conference (EUSIPCO)
Palermo, Italy,

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Sannolikhetsteori och statistik

Signalbehandling

Mer information

Skapat

2026-01-27