DP-16QAM Modulated vs. Unmodulated Polarization Signatures for ML-Based Fiber Sensing
Artikel i vetenskaplig tidskrift, 2026

Fast and accurate detection of various physical layer threats that target optical networks is key to secure and reliable global communications. Conventional monitoring methods often fail to detect subtle anomalies, which requires advanced sensing techniques. Machine learning (ML) analysis of the State of Polarization (SOP) of unmodulated signals was shown to successfully detect such disturbances. However, real-world networks typically operate with high-speed modulated signals, which may alter SOP behavior and challenge the applicability of ML techniques developed for unmodulated signals. This paper investigates the implications of signal modulation supporting high-data rates on the interpretability of SOP signatures. We perform the first experimental comparison of anomaly detection approaches based on SOP for Dual-Polarization 16-Quadrature Amplitude Modulation (DP-16QAM) modulated and unmodulated optical signals subjected to identical physical perturbations caused by fiber tapping and vibrations. We analyze four representative events under both signal modalities and assess the impact of modulation on SOP dynamics using a 63.4 km fiber link in a real-world metro network. We design four datasets that isolate, merge, and jointly classify the different signal modalities, and compare the performance of ten best-performing supervised ML techniques in each case. Our findings indicate that modulated signals tend to exhibit smoother SOP trajectories, likely due to the temporal averaging effects introduced by high symbol rates, wherein rapid symbol transitions suppress high-frequency polarization noise. Importantly, this smoothening does not obscure the slower, event-induced polarization drifts observed during physical disturbances, allowing ML models to reliably differentiate between different physical events (e.g., bending, vibrations) and signal modalities (modulated vs. unmodulated), achieving accuracy values between 97.12% and 98.47%.

Machine Learn- ing (ML)

Modulation

Vibrations

Stokes parameters

State of Polarization (SOP)

Fiber sensing

Physical layer security

Fiber bending

Författare

Leyla Sadighi

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Carlos Natalino Da Silva

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Stefan Karlsson

AB Micropol Fiberoptic

Lena Wosinska

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Eoin Kenny

HEAnet

Marco Ruffini

Trinity College Dublin

Marija Furdek Prekratic

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Journal of Lightwave Technology

0733-8724 (ISSN) 1558-2213 (eISSN)

Vol. In Press

5G betrodda och säkra nätverkstjänster (5G-TACTIC)

Europeiska kommissionen (EU) (EC/H2020/101127973), 2023-12-01 -- 2026-11-30.

InfraTrust: Möjliggör pålitliga tjänster över sårbar fysisk nätverksinfrastruktur

Vetenskapsrådet (VR) (2023-05249), 2024-01-01 -- 2027-12-31.

Efficient Confluent Edge Networks (ECO-eNET)

Europeiska kommissionen (EU) (EC/HE/101139133), 2024-01-01 -- 2028-12-31.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier (SSIF 2025)

Kommunikationssystem

Datorseende och lärande system

Telekommunikation

Signalbehandling

DOI

10.1109/JLT.2026.3660791

Mer information

Senast uppdaterat

2026-02-06