A Flexible Code-Compression Scheme using Partitioned Look-Up Tables
Paper i proceeding, 2009

Wide instruction formats make it possible to control microarchitecture resources more precisely by the compiler by either enabling more parallelism (VLIW) or by saving power. Unfortunately, wide instructions impose a high pressure on the memory system due to an increased instruction-fetch bandwidth and a larger code working set/footprint. This paper presents a code compression scheme that allows the compiler to select what subset of a wide instruction set to use in each program phase at the granularity of basic blocks based on a profiling methodology. The decompression engine comprises a set of tables that convert a narrow instruction into a wide instruction in a dynamic fashion. The paper also presents a method for how to configure and dimension the decompression engine and how to generate a compressed program with embedded instructions that dynamically manage the tables in the decompression engine. We find that the 77 control bits in the original FlexCore instruction format can be reduced to 32 bits offering a compression of 58% and a modest performance overhead of less than 1% for management of the decompression tables.


Martin Thuresson

Chalmers, Data- och informationsteknik, Datorteknik

Magnus Själander

Chalmers, Data- och informationsteknik, Datorteknik

Per Stenström

Chalmers, Data- och informationsteknik, Datorteknik

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

03029743 (ISSN) 16113349 (eISSN)

Vol. 5409 LNCS 95-109
3540929894 (ISBN)


Data- och informationsvetenskap





Mer information

Senast uppdaterat