Approximating the Pareto Optimal Set using a Reduced Set of Objective Functions
Artikel i vetenskaplig tidskrift, 2010

Real-world applications of multi-objective optimization often involve numerous objective functions. But while such problems are in general computationally intractable, it is seldom necessary to determine the Pareto optimal set exactly. A significantly smaller computational burden thus motivates the loss of precision if the size of the loss can be estimated. We describe a method for finding an optimal reduction of the set of objectives yielding a smaller problem whose Pareto optimal set w.r.t. a discrete subset of the decision space is as close as possible to that of the original set of objectives. Utilizing a new characterization of Pareto optimality and presuming a finite decision space, we derive a program whose solution represents an optimal reduction. We also propose an approximate, computationally less demanding formulation which utilizes correlations between the objectives and separates into two parts. Numerical results from an industrial instance concerning the configuration of heavy-duty trucks are also reported, demonstrating the usefulness of the method developed. The results show that multi-objective optimization problems can be significantly simplified with an induced error which can be measured.

Författare

Peter Lindroth

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Michael Patriksson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Ann-Brith Strömberg

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

European Journal of Operational Research

0377-2217 (ISSN)

Vol. 207 3 1519-1534

Produktkonfigurering med hänsyn till multipla kriterier i en heterogen och dynamisk omgivning

Volvo Group, 2005-08-01 -- 2011-10-31.

Styrkeområden

Transport

Ämneskategorier

Beräkningsmatematik

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.ejor.2010.07.004

Mer information

Senast uppdaterat

2023-03-07