High-Bandwidth Spatial Equalization for mmWave Massive MU-MIMO with Processing-in-Memory
Artikel i vetenskaplig tidskrift, 2020

All-digital basestation (BS) architectures enable superior spectral efficiency compared to hybrid solutions in massive multi-user MIMO systems. However, supporting large bandwidths with all-digital architectures at mmWave frequencies is challenging as traditional baseband processing would result in excessively high power consumption and large silicon area. The recently-proposed concept of finite-alphabet equalization is able to address both of these issues by using equalization matrices that contain low-resolution entries to lower the power and complexity of high-throughput matrix-vector products in hardware. In this brief, we explore two different finite-alphabet equalization hardware implementations that tightly integrate the memory and processing elements: (i) a parallel array of multiply-accumulate (MAC) units and (ii) a bit-serial processing-in-memory (PIM) architecture. Our all-digital VLSI implementation results in 28nm CMOS show that the bit-serial PIM architecture reduces the area and power consumption up to a factor of 2× and 3×, respectively, when compared to a parallel MAC array that operates at the same throughput.

digital ASIC design


processing-in-memory (PIM)

massive multi-user MIMO

Millimeter wave (mmWave)

spatial equalization


Oscar Castañeda

Cornell Tech

Sven Jacobsson

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Kommunikationssystem

Ericsson AB

Giuseppe Durisi

Chalmers, Elektroteknik, Kommunikations- och antennsystem, Kommunikationssystem

Tom Goldstein

University of Maryland

Christoph Studer

Cornell Tech

IEEE Transactions on Circuits and Systems II: Express Briefs

1549-7747 (ISSN) 1558-3791 (eISSN)

Vol. 67 5 891-895 9050632

Massive MIMO med lågprecisionsomvandlare

Stiftelsen för Strategisk forskning (SSF), 2015-03-01 -- 2020-02-28.

Massiv MIMO-system med olinjär, icke-ideal hårdvara

Stiftelsen för Strategisk forskning (SSF), 2014-01-01 -- 2015-12-31.



Inbäddad systemteknik

Annan elektroteknik och elektronik



Mer information

Senast uppdaterat