Selection of complementary foods based on optimal nutritional values
Journal article, 2017

Human milk is beneficial for growth and development of infants. Several factors result in mothers ceasing breastfeeding which leads to introduction of breast-milk substitutes (BMS). In some communities traditional foods are given as BMS, in others they are given as complementary foods during weaning. Improper food selection at this stage is associated with a high prevalence of malnutrition in children under 5 years. Here we listed the traditional foods from four continents and compared them with human milk based on their dietary contents. Vitamins such as thiamine (similar to[2-10] folds), riboflavin (similar to[4-10] folds) and ascorbic acid (< 2 folds) contents of Asian and African foods were markedly lower. In order to extend the search for foods that includes similar dietary constituents as human milk, we designed a strategy of screening 8654 foods. 12 foods were identified and these foods were evaluated for their ability to meet the daily nutritional requirement of breastfed and nonbreastfed infants during their first year of life. Genome-scale models of infant's hepatocytes, adipocytes and myocytes were then used to simulate in vitro growth of tissues when subjected to these foods. Key findings were that pork ham cured, fish pudding, and egg lean white induced better tissue growth, and quark with fruit, cheese quarg 45% and cheese cream 60% had similar lactose content as human milk.

Breast

South-Africa

Milk

Metabolic Network

Obesity

Recommendations

Undernutrition

Nutrient Density

Infants

Feeding Practices

Author

Partho Sen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Adil Mardinoglu

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Jens B Nielsen

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 7 1 Article no 5413 - 5413

Subject Categories

Biological Sciences

DOI

10.1038/s41598-017-05650-0

More information

Created

10/7/2017