Computation of low-complexity control-invariant sets for systems with uncertain parameter dependence
Journal article, 2019

This paper considers the problem of computing a low-complexity robust control-invariant (LC-RCI) set for uncertain systems, along with a static linear state-feedback law. The LC-RCI set, assumed to be symmetric around the origin and described by the same number of affine inequalities as twice the dimension of the state vector, is the result of an iterative procedure, where semi-definite programs (SDPs) are solved at each step. The SDPs are formulated to increase the LC-RCI volume at each step, subject to tractable reformulations of the system constraints as well as the invariance condition (in the form of standard or dilated LMIs), and a new approach to determinant maximization. The two proposed algorithms are applicable to systems with rational parameter dependence, which cannot be handled with the existing similar approaches without introducing additional conservatism.

Linear matrix inequalities (LMI)

Linear fractional transformation (LFT)

Invariant set

Semi-definite program

Author

Ankit Gupta

Chalmers, Electrical Engineering, Systems and control

Hakan Köroglu

Chalmers, Electrical Engineering, Systems and control

Paolo Falcone

Chalmers, Electrical Engineering, Systems and control

Automatica

0005-1098 (ISSN)

Vol. 101 330-337

Subject Categories

Computational Mathematics

Control Engineering

Signal Processing

DOI

10.1016/j.automatica.2018.12.020

More information

Latest update

1/17/2022