Design of Haptic Feedback Control for Steer-by-Wire
Paper in proceeding, 2018

This paper illustrates a comparison of different haptic feedback control strategies; primarily focusing on open and closed-loop methods for a Force-Feedback Steer-by-Wire system. Due to shortcomings caused by the feedback motor impedance in the open loop architecture, the tracking performance is deteriorated. Consequently it is shown that the closed-loop solutions provide an improved response within the desired steering excitation range. The closed-loop possibilities, torque and position control, are designed and objectively compared in terms of performance and stability. The controller objectives are inertia compensation and reference tracking. For a given reference, the stability constraint between the controller gains responsible for the two objectives is contrasting in both the methods. Higher bandwidth is achieved for torque controller, whereas the driver arm inertia limits the position control performance. The linear system analysis is supported by the experimental results.

Steer-by-Wire

Linear control theory

Haptic feedback

Author

Tushar Chugh

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

Volvo Cars

Fredrik Bruzelius

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

The Swedish National Road and Transport Research Institute (VTI)

Matthijs Klomp

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

Volvo Cars

Barys Shyrokau

Delft University of Technology

IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC

Vol. 21 1737-1744

21st IEEE International Conference on Intelligent Transportation Systems (ITSC)
Maui, Hawaii, USA,

Steer by wire Opportunities, performance and system safety (SWOPPS)

VINNOVA (2017-05504), 2018-03-09 -- 2021-07-01.

Development of Virtual Steering Control and Steering Feel Model Reference

European Commission (EC) (EC/H2020/675999), 2016-07-01 -- 2022-06-30.

Volvo Cars, 2016-07-01 -- 2022-06-30.

Areas of Advance

Transport

Subject Categories

Vehicle Engineering

Robotics

Control Engineering

DOI

10.1109/ITSC.2018.8569795

More information

Latest update

3/2/2022 2