Enhancing Trust in Devices and Transactions of the Internet of Things
Licentiate thesis, 2020
These interactions will produce billions of transactions.
With IoT, users can utilize their phones, home appliances, wearables, or any other wireless embedded device to conduct transactions.
For example, a smart car and a parking lot can utilize their sensors to negotiate the fees of a parking spot.
The success of IoT applications highly depends on the ability of wireless embedded devices to cope with a large number of transactions.
However, these devices face significant constraints in terms of memory, computation, and energy capacity.
With our work, we target the challenges of accurately recording IoT transactions from resource-constrained devices. We identify three domain-problems: a) malicious software modification, b) non-repudiation of IoT transactions, and c) inability of IoT transactions to include sensors readings and actuators.
The motivation comes from two key factors.
First, with Internet connectivity, IoT devices are exposed to cyber-attacks.
Internet connectivity makes it possible for malicious users to find ways to connect and modify the software of a device.
Second, we need to store transactions from IoT devices that are owned or operated by different stakeholders.
The thesis includes three papers. In the first paper, we perform an empirical evaluation of Secure Boot on embedded devices.
In the second paper, we propose IoTLogBlock, an architecture to record off-line transactions of IoT devices.
In the third paper, we propose TinyEVM, an architecture to execute off-chain smart contracts on IoT devices with an ability to include sensor readings and actuators as part of IoT transactions.
Secure Boot
Distributed Systems
Blockchain
Embedded Systems
Smart Contracts
Internet of Things
Author
Christos Profentzas
Chalmers, Computer Science and Engineering (Chalmers), Networks and Systems (Chalmers)
Performance of Secure Boot in Embedded Systems
Proceedings of the 15th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS),;(2019)p. 198-204
Paper in proceeding
TinyEVM: Off-Chain Smart Contracts on Low-Power IoT Devices
40th IEEE International Conference on Distributed Computing Systems,;(2020)p. 507-518
Paper in proceeding
IoTLogBlock: Recording Off-line Transactions of Low-Power IoT Devices Using a Blockchain
Proceedings of the 44th IEEE Conference on Local Computer Networks (LCN),;(2019)
Paper in proceeding
KIDSAM: Knowledge and information-sharing in digital collaborative projects
VINNOVA (2018-03966), 2018-11-01 -- 2021-11-30.
RIOT: Resilient Internet of Things
Swedish Civil Contingencies Agency (MSB2018-12526), 2019-01-01 -- 2023-12-31.
AgreeOnIT: Lightweight Consensus and Distributed Computing in the Resource-Constrained Internet of Things
Swedish Research Council (VR) (37200024), 2019-01-01 -- 2022-12-31.
Subject Categories (SSIF 2011)
Computer Engineering
Communication Systems
Embedded Systems
Areas of Advance
Information and Communication Technology
Technical report - Department of Computing Science, Chalmers University of Technology and Göteborg University: 210L
Publisher
Chalmers
Online
Opponent: Prof. Raja Jurdak, School of Computer Science, Queensland University of Technology, Australia