Electrochemical Model-Based Fast Charging: Physical Constraint-Triggered PI Control
Journal article, 2021

This paper proposes a new fast charging strategy for lithium-ion (Li-ion) batteries. The approach relies on an experimentally validated high-fidelity model describing battery electrochemical and thermal dynamics that determine the fast charging capability. Such a high-dimensional nonlinear dynamic model can be intractable to compute in real-time if it is fused with the extended Kalman filter or the unscented Kalman filter that is commonly used in the community of battery management. To significantly save computational efforts and achieve rapid convergence, the ensemble transform Kalman filter (ETKF) is selected and tailored to estimate the nonuniform Li-ion battery states. Then, a health- and safety-aware charging protocol is proposed based on successively applied proportional-integral (PI) control actions. The controller regulates charging rates using online battery state information and the imposed constraints, in which each PI control action automatically comes into play when its corresponding constraint is triggered. The proposed physical constraint-triggered PI charging control strategy with the ETKF is evaluated and compared with several prevalent alternatives. It shows that the derived controller can achieve close to the optimal solution in terms of charging time and trajectory, as determined by a nonlinear model predictive controller, but at a drastically reduced computational cost.

lithium plating

lithium-ion (Li-ion) battery

Electrochemical model

fast charging

ensemble transform Kalman filter (ETKF)

Author

Yang Li

Chalmers, Electrical Engineering, Systems and control, Automatic Control

D. Mahinda Vilathgamuwa

Queensland University of Technology (QUT)

Evelina Wikner

Chalmers, Electrical Engineering, Electric Power Engineering, Electrical Machines and Power Electronics

Zhongbao Wei

Beijing Institute of Technology

Xinan Zhang

University of Western Australia

Torbjörn Thiringer

Chalmers, Electrical Engineering, Electric Power Engineering, Electrical Machines and Power Electronics

Torsten Wik

Chalmers, Electrical Engineering, Systems and control, Automatic Control

Changfu Zou

Chalmers, Electrical Engineering, Systems and control, Automatic Control

IEEE Transactions on Energy Conversion

0885-8969 (ISSN)

Vol. In Press

Lithium-ion battery control for faster charging and longer life

European Commission (EC), 2020-11-01 -- 2022-10-31.

Areas of Advance

Information and Communication Technology

Transport

Energy

Driving Forces

Sustainable development

Subject Categories

Energy Systems

Control Engineering

Other Electrical Engineering, Electronic Engineering, Information Engineering

DOI

10.1109/TEC.2021.3065983

More information

Latest update

4/30/2021