An extended LuGre-brush tyre model for large camber angles and turning speeds
Journal article, 2023

This paper presents a novel tyre model which combines the LuGre formulation with the exact brush theory recently developed by the authors, and which accounts for large camber angles and turning speeds. Closed-form solutions for the frictional state at the tyre-road interface are provided for the case of constant slip inputs, considering rectangular and elliptical contact patches. The steady-state tyre characteristics resulting from the proposed approach are compared to those obtained by employing the standard formulation of the LuGre-brush tyre models and the exact brush theory for large camber angles. Then, to cope with the general situation of time-varying slips and spins, two approximated lumped models are developed that describe the aggregate dynamics of the tyre forces and moment. In particular, it is found that the transient evolution of the tangential forces may be approximated by a system of two coupled ordinary differential equations (ODEs), whilst the dynamics of the self-aligning moment may be described by combining two systems of two coupled ODEs. Given its stability properties and ease of implementation, the lumped one may be effectively employed for vehicle state estimation and control purposes.

aggregate dynamics

brush models

large camber angles

Tyre modelling

transient tyre dynamics

LuGre tyre model

Author

Luigi Romano

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

Fredrik Bruzelius

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

Bengt J H Jacobson

Chalmers, Mechanics and Maritime Sciences (M2), Vehicle Engineering and Autonomous Systems

Vehicle System Dynamics

0042-3114 (ISSN) 1744-5159 (eISSN)

Vol. 61 6 1674-1706

COVER – Real world CO2 assessment and Vehicle enERgy efficiency

Swedish Energy Agency (2017-007895), 2018-01-01 -- 2021-12-31.

VINNOVA (2017-007895), 2018-01-01 -- 2021-12-31.

Driving Forces

Sustainable development

Areas of Advance

Transport

Subject Categories (SSIF 2011)

Applied Mechanics

Vehicle Engineering

Control Engineering

DOI

10.1080/00423114.2022.2086887

More information

Latest update

2/2/2024 8