Utilization of convolutional neural networks for HI source finding: Team FORSKA-Sweden approach to SKA Data Challenge 2
Journal article, 2023

Context. The future deployment of the Square Kilometer Array (SKA) will lead to a massive influx of astronomical data and the automatic detection and characterization of sources will therefore prove crucial in utilizing its full potential. Aims. We examine how existing astronomical knowledge and tools can be utilized in a machine learning-based pipeline to find 3D spectral line sources. Methods. We present a source-finding pipeline designed to detect 21-cm emission from galaxies that provides the second-best submission of SKA Science Data Challenge 2. The first pipeline step was galaxy segmentation, which consisted of a convolutional neural network (CNN) that took an HI cube as input and output a binary mask to separate galaxy and background voxels. The CNN was trained to output a target mask algorithmically constructed from the underlying source catalog of the simulation. For each source in the catalog, its listed properties were used to mask the voxels in its neighborhood that capture plausible signal distributions of the galaxy. To make the training more efficient, regions containing galaxies were oversampled compared to the background regions. In the subsequent source characterization step, the final source catalog was generated by the merging and dilation modules of the existing source-finding software SOFIA, and some complementary calculations, with the CNN-generated mask as input. To cope with the large size of HI cubes while also allowing for deployment on various computational resources, the pipeline was implemented with flexible and configurable memory usage. Results. We show that once the segmentation CNN has been trained, the performance can be fine-Tuned by adjusting the parameters involved in producing the catalog from the mask. Using different sets of parameter values offers a trade-off between completeness and reliability.

Methods: data analysis

Methods: statistical

Radio lines: galaxies

Author

Henrik Håkansson

Fraunhofer-Chalmers Centre

Anders Sjöberg

Fraunhofer-Chalmers Centre

Maria Carmen Toribio Perez

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Magnus Önnheim

Fraunhofer-Chalmers Centre

Michael Olberg

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Emil Gustavsson

Fraunhofer-Chalmers Centre

Michael Lindqvist

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Mats Jirstrand

Fraunhofer-Chalmers Centre

John Conway

Chalmers, Space, Earth and Environment, Onsala Space Observatory

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 671 A39

Onsala space observatory infrastructure

Swedish Research Council (VR) (2017-00648), 2018-01-01 -- 2021-12-31.

Areas of Advance

Information and Communication Technology

Infrastructure

Onsala Space Observatory

Subject Categories (SSIF 2011)

Bioinformatics (Computational Biology)

Signal Processing

Computer Science

DOI

10.1051/0004-6361/202245139

More information

Latest update

8/27/2024