Bridging the THz-gap
Forskningsprojekt, 2014 – 2018

The transmission rate of wireless data is since 1995 increasing as one order of magnitude every 5 years. In addition, the amount of transferred data in the mobile networks has doubled every year, and is expected to increase by three orders of magnitude within 10 years. In order to maintain this development and avoid data-congestion in the mobile traffic networks, it is necessary to find new solutions for increasing the datarate. We propose a disruptive new technology enabling devices for telecom, sensors, and medical applications in the so called ’THz-gap’, highlighting the frequency range 100-1000 GHz. Currently, the major obstacle for using this frequency band is the lack of a technology capable of producing adequate output power levels. The major impact from this project is to enable this frequency window for scientific and commercial exploitation by creating a THz-technology platform for highly miniaturized systems that can be produced at low cost. Above 100 GHz, several hundred gigahertz of bandwidth is available for new communication and sensing applications. However, components for making THz-systems are today too expensive, bulky, and power hungry and not able to generate sufficient power for communication systems. The proposed project is aiming at opening the THz-window for commercial applications. This will be accomplished by developing a platform for THz-system components, including a completely new transistor technology, suitable for THz integrated circuits that can be mass-produced utilizing low-cost semiconductor processes. The integrated circuits will be heterogeneously integrated with passive components like filters, power combiners, resonant cavities, antennas etc in a silicon sandwich approach, allowing ‘Systems In Package’ (SIP) components to be realized. The objective is very challenging and requires a combined effort by leading experts from different disciplines. The main scientific challenges are: 1. Growth of high quality InGaN-based epi-layers with superior electron transport properties 2. Design and fabrication of InGanN-based transistors and MMICs (monolithic microwave integrated circuits) 3. The development of a heterogeneous integration platform for the MMICs, including MEMS-based (micro electro mechanical systems) components for frequency agility.

Deltagare

Herbert Zirath (kontakt)

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Tommy Ive

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Anna Malmros

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Niklas Rorsman

Chalmers, Mikroteknologi och nanovetenskap, Mikrovågselektronik

Samarbetspartners

Kungliga Tekniska Högskolan (KTH)

Stockholm, Sweden

Linköpings universitet

Linköping, Sweden

Finansiering

Knut och Alice Wallenbergs Stiftelse

Projekt-id: KAW2013.0049
Finansierar Chalmers deltagande under 2014–2018

Relaterade styrkeområden och infrastruktur

Hållbar utveckling

Drivkrafter

Mer information

Projektet på Chalmers webb

http://www.chalmers.se/en/projects/Pages/B...

Skapat

2015-03-19