Improved Heat Spreading Performance of Functionalized Graphene in Microelectronic Device Application
Artikel i vetenskaplig tidskrift, 2015

It is demonstrated that a graphene-based film (GBF) functionalized with silane molecules strongly enhances thermal performance. The resistance temperature detector results show that the inclusion of silane molecules doubles the heat spreading ability. Furthermore, molecular dynamics simulations show that the thermal conductivity () of the GBF increased by 15%-56% with respect to the number density of molecules compared to that with the nonfunctionalized graphene substrate. This increase in is attributed to the enhanced in-plane heat conduction of the GBF, resulting from the simultaneous increase of the thermal resistance between the GBF and the functionalized substrate limiting cross-plane phonon scattering. Enhancement of the thermal performance by inserting silane-functionalized molecules is important for the development of next-generation electronic devices and proposed application of GBFs for thermal management.

LAYER GRAPHENE

DISSIPATION

TRANSPORT

molecular dynamics

CIRCUITS

heat spreaders

hotspots

OXIDE

phonon transport

SINK

FILMS

RELIABILITY

THERMAL-CONDUCTIVITY

MANAGEMENT

graphene

Författare

Yong Zhang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

H. X. Han

Nan Wang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Pengtu Zhang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Y. F. Fu

Murali Murugesan

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Michael Edwards

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Kjell Jeppson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

S. Volz

Johan Liu

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Advanced Functional Materials

1616-301X (ISSN)

Vol. 25 4430-4435

Ämneskategorier

Nanoteknik

DOI

10.1002/adfm.201500990