Integration of expert knowledge into radial basis function surrogate models
Artikel i vetenskaplig tidskrift, 2016

A current application in a collaboration between Chalmers University of Technology and Volvo Group Trucks Technology concerns the global optimization of a complex simulation-based function describing the rolling resistance coefficient of a truck tyre. This function is crucial for the optimization of truck tyres selection considered. The need to explicitly describe and optimize this function provided the main motivation for the research presented in this article. Many optimization algorithms for simulation-based optimization problems use sample points to create a computationally simple surrogate model of the objective function. Typically, not all important characteristics of the complex function (as, e.g., non-negativity)—here referred to as expert knowledge—are automatically inherited by the surrogate model. We demonstrate the integration of several types of expert knowledge into a radial basis function interpolation. The methodology is first illustrated on a simple example function and then applied to a function describing the rolling resistance coefficient of truck tyres. Our numerical results indicate that expert knowledge can be advantageously incorporated and utilized when creating global approximations of unknown functions from sample points.

Radial basis functions

Expert knowledge

Optimization

Rolling resistance coefficient

Approximation

Interpolation

Författare

Zuzana Nedelkova

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Peter Lindroth

Volvo Group

Ann-Brith Strömberg

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Michael Patriksson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Optimization and Engineering

1389-4420 (ISSN) 15732924 (eISSN)

Vol. 17 3 577-603

Bränslebesparing med hjälp av däcksenergiförlustoptimering

Chalmers, 2012-01-01 -- 2018-05-04.

Energimyndigheten (2011-001831), 2012-01-01 -- 2015-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Ämneskategorier

Beräkningsmatematik

Fundament

Grundläggande vetenskaper

DOI

10.1007/s11081-015-9297-7

Mer information

Senast uppdaterat

2019-03-08