Optimization of hybrid Petri nets with shared variables
Paper i proceeding, 2015

A generalized modeling framework for hybrid systems, including both discrete event and continuous-time dynamics, is presented in this paper. It is based on a new type of hybrid Petri nets, involving both modular structures, discrete shared variables and flexible transition predicates. The continuous-time dynamics is given by local differential equations, in a style similar to hybrid automata. This can be compared with existing hybrid Petri nets, where also the continuous-time dynamics is represented graphically, but then in reality limiting the continuous-time behavior to simple flow processes. The hybrid Petri net proposed in this paper works well for any type of continuous-time dynamics, including even differential inclusions, and the result is a compact, flexible and readable mix of graphical and equation based representations. The proposed modeling framework is also applied to a physical robot cell, where the energy consumption of the robot motions is minimized based on a hybrid Petri net model, easily transformed to a mixed integer nonlinear programming problem. The resulting optimization procedure is shown to reduce the energy consumption of the real robot cell by approximately 50%.

Discrete events

Petri nets

robot stations

energy optimization

hybrid systems

Författare

Bengt Lennartson

Chalmers, Signaler och system, System- och reglerteknik, Automation

Kristofer Bengtsson

Chalmers, Signaler och system, System- och reglerteknik, Automation

Oskar Wigström

Chalmers, Signaler och system, System- och reglerteknik, Automation

11th IEEE International Conference on Automation Science and Engineering, CASE 2015, Gothenburg, Sweden, 24-28 August 2015

2161-8089 (eISSN)

1395-1396

Ämneskategorier

Robotteknik och automation

DOI

10.1109/CoASE.2015.7294293

ISBN

978-1-4673-8183-3