Functionalization mediates heat transport in graphene nanoflakes
Artikel i vetenskaplig tidskrift, 2016

The high thermal conductivity of graphene and few-layer graphene undergoes severe degradations through contact with the substrate. Here we show experimentally that the thermal management of a micro heater is substantially improved by introducing alternative heat-escaping channels into a graphene-based film bonded to functionalized graphene oxide through amino-silane molecules. Using a resistance temperature probe for in situ monitoring we demonstrate that the hotspot temperature was lowered by similar to 28 degrees C for a chip operating at 1,300 Wcm(-2). Thermal resistance probed by pulsed photothermal reflectance measurements demonstrated an improved thermal coupling due to functionalization on the graphene-graphene oxide interface. Three functionalization molecules manifest distinct interfacial thermal transport behaviour, corroborating our atomistic calculations in unveiling the role of molecular chain length and functional groups. Molecular dynamics simulations reveal that the functionalization constrains the cross-plane phonon scattering, which in turn enhances in-plane heat conduction of the bonded graphene film by recovering the long flexural phonon lifetime.

thermal-conductivity

spreader

hot-spots

few-layer graphene

molecular-dynamics

contacts

oxide

paper

management

conductance

Författare

H. X. Han

Laboratoire d'Energetique Moleculaire et Macroscopique, Combustion

Yong Zhang

Elektronikmaterial och system

Nan Wang

Elektronikmaterial och system

Majid Kabiri Samani

Elektronikmaterial och system

Y. X. Ni

University of Minnesota

Z. Y. Mijbil

Al-Qasim Green University

Lancaster University

Michael Edwards

Elektronikmaterial och system

S. Y. Xiong

Max Planck-institutet

K. Saaskilahti

Aalto-Yliopisto

Murali Murugesan

Elektronikmaterial och system

Yifeng Fu

Elektronikmaterial och system

L. Ye

SHT Smart High-Tech

H. Sadeghi

Lancaster University

S. Bailey

Lancaster University

Y. A. Kosevich

Russian Academy of Sciences

Laboratoire d'Energetique Moleculaire et Macroscopique, Combustion

C. J. Lambert

Lancaster University

Johan Liu

Elektronikmaterial och system

S. Volz

Laboratoire d'Energetique Moleculaire et Macroscopique, Combustion

Nature Communications

2041-1723 (ISSN)

Vol. 7 11281

Innovative Nano and Micro Technologies for Advanced Thermo and Mechanical Interfaces (NANOTHERM)

Europeiska kommissionen (FP7), 2012-09-01 -- 2015-08-31.

Ämneskategorier

Oorganisk kemi

Fysikalisk kemi

Den kondenserade materiens fysik

DOI

10.1038/ncomms11281

PubMed

27125636