Reaching Full Density of 100Cr6 PM Steel by Capsule Free Hot Isostatic Pressing of High-Velocity Compacted Material
Paper i proceeding, 2016

Spherical gas atomised 100Cr6 steel powder, processed with the MMS-Scanpac® process to 95% density (agglomeration, followed by conventional pressing, low temperature sintering and re-strike using high velocity adiabatic compaction) has been fully compacted using capsule-free hot isostatic pressing. The material is characterised at different steps of the process and the results are discussed in this paper. Sintering steel powder with high content of carbon requires carbon control at sintering. By continuously measuring the atmosphere at sintering the ingoing gases are adjusted so that carbon control is achieved. Computational work has been made in order to determine how the sintering atmosphere should be adjusted based on the oxygen release and moisture content in the furnace at sintering.

carbon control INTRODUCTION

high velocity compaction


Capsule free HIP


Hans Magnusson

Swerea KIMAB

Karin Frisk

Swerea KIMAB

Maheswaran Vattur Sundaram

Chalmers, Material- och tillverkningsteknik, Yt- och mikrostrukturteknik

Eduard Hryha

Chalmers, Material- och tillverkningsteknik, Yt- och mikrostrukturteknik

Christer Åslund

Bofors Bruk

Björn-Olof Bengtsson

Carpenter Powder Products AB


Quintus Technologies

Sören Wiberg

Linde Gas

World Powder Metallurgy 2016 Congress and Exhibition, World PM 2016; Hamburg; Germany; 9 October 2016 through 13 October 2016


Hållbar utveckling





Bearbetnings-, yt- och fogningsteknik

Metallurgi och metalliska material