Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide
Artikel i vetenskaplig tidskrift, 2017

The two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS2 (∼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5–2% has been observed, corresponding to spin polarization of 5–10% in the measured temperature range of 300–75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance.

tunnel magnetoresistance

2D semiconductor

spin-polarized tunneling

multilayer MoS2

density functional theory


André Dankert

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Parham Pashaei

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Venkata Kamalakar Mutta

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

A.P.S. Gaur

University of Puerto Rico

Iowa State University

S. Sahoo

University of Puerto Rico

Institute of Physics Bhubaneswar

I. Rungger

National Physical Laboratory (NPL)

A. Narayan

Trinity College Dublin

Eidgenössische Technische Hochschule Zürich (ETH)

K. Dolui

University of Delaware

Trinity College Dublin

Anamul Md Hoque

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

R.S. Patel

Birla Institute of Technology and Science Pilani

M.P. De Jong

MESA Institute for Nanotechnology

R.S. Katiyar

University of Puerto Rico

S. Sanvito

Trinity College Dublin

Saroj Prasad Dash

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 11 6 6389-6395

Graphene-Based Revolutions in ICT And Beyond (Graphene Flagship)

Europeiska kommissionen (FP7), 2013-10-01 -- 2016-03-31.


Nanovetenskap och nanoteknik (2010-2017)



Grundläggande vetenskaper




Chalmers materialanalyslaboratorium




Mer information

Senast uppdaterat