Simulation of small-scale cavity structures through coupling of the mixture model with the discrete bubble model
Poster (konferens), 2017
Most incompressible models to simulate cavitating flows relies on a rudimentary mixture assumption of vapour and liquid, that does not account for the dynamics of small-scale bubbles in cloudy cavitation.
This PhD project aims to develop a Eulerian sub-grid mixture model for incompressible LES, that implements mixture properties for vapour clouds, extracted from DNS data, coupled with Lagrangian bubble models for very sparse clouds.
The new model will yield a more realistic condensation process, derived from vapour cloud dynamics, with seamless transition to micro-bubble dynamics.
In the current study, the governing equations are improved to avoid non-realistic flow variations during the Eulerian-Lagrangian transition.