Distributed channel prediction for multi-agent systems
Paper i proceeding, 2017

Multi-agent systems (MAS) communicate over a wireless network to coordinate their actions and to report their mission status. Connectivity and system-level performance can be improved by channel gain prediction. We present a distributed Gaussian process regression (GPR) framework for channel prediction in terms of the received power in MAS. The framework combines a Bayesian committee machine with an average consensus scheme, thus distributing not only the memory, but also computational and communication loads. Through Monte Carlo simulations, we demonstrate the performance of the proposed GPR.

Författare

V.P. Chowdappa

Universitat de Valencia

Markus Fröhle

Chalmers, Signaler och system, Kommunikationssystem, informationsteori och antenner, Kommunikationssystem

Henk Wymeersch

Chalmers, Signaler och system, Kommunikationssystem, informationsteori och antenner, Kommunikationssystem

Carmen Botella Mascarell

Universitat de Valencia

2017 IEEE International Conference on Communications, ICC 2017, Paris, France, 21-25 May 2017

1550-3607 (ISSN)

Ämneskategorier

Kommunikationssystem

DOI

10.1109/ICC.2017.7997044

ISBN

978-1-4673-8999-0

Mer information

Senast uppdaterat

2018-03-08