Secondary organic aerosol reduced by mixture of atmospheric vapours
Artikel i vetenskaplig tidskrift, 2019

Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene ‘scavenges’ hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).


G. McFiggans

University of Manchester

Th. F. Mentel

Forschungszentrum Jülich

J. Wildt

Forschungszentrum Jülich

Iida Pullinen

Forschungszentrum Jülich

Sungah Kang

Forschungszentrum Jülich

Einhard Kleist

Forschungszentrum Jülich

Sebastian Schmitt

Forschungszentrum Jülich

Monika Springer

Forschungszentrum Jülich

R. Tillmann

Forschungszentrum Jülich

Cheng Wu

Forschungszentrum Jülich

Defeng Zhao

Forschungszentrum Jülich

Fudan University

Mattias Hallquist

Göteborgs universitet

Cameron Faxon

Göteborgs universitet

Michael Le Breton

Göteborgs universitet

Åsa M. Hallquist

IVL Svenska Miljöinstitutet

David Simpson

Chalmers, Rymd-, geo- och miljövetenskap, Mikrovågs- och optisk fjärranalys, Global miljömätteknik och modellering

Robert Bergström

Göteborgs universitet


Chalmers, Rymd-, geo- och miljövetenskap, Mikrovågs- och optisk fjärranalys

M. E. Jenkin

Atmospheric Chemistry Services

Mikael Ehn

Helsingin Yliopisto

Joel A. Thornton

University of Washington

M. Rami Alfarra

University of Manchester

Thomas J. Bannan

University of Manchester

C. J. Percival

University of Manchester

Michael Priestley

University of Manchester

Göteborgs universitet

D. Topping

University of Manchester

A. Kiendler-Scharr

Forschungszentrum Jülich


0028-0836 (ISSN) 1476-4687 (eISSN)

Vol. 565 7741 587-593

Atmosfärisk oxidation av stress-inducerade emissioner från växtlighet - dess roll för aerosolbildning

Formas (942-2015-1537), 2016-01-01 -- 2018-12-31.

ModElling the Global Earth system (MERGE)

Lunds universitet (9945095), 2018-01-01 -- 2019-12-31.


Meteorologi och atmosfärforskning


Grundläggande vetenskaper





Mer information

Senast uppdaterat