Microstructural characteristics of Alloy 718 and Waspaloy and their influence on flank wear during turning
Artikel i vetenskaplig tidskrift, 2018
The results show that Alloy 718 is associated with faster flank wear progression as compared with Waspaloy. The difference in wear is not likely to be the result of higher thermal and mechanical loads on the tool during machining Alloy 718. Characterization of obtained flank wear topographies after removal of adhered workpiece material revealed that abrasive wear is the dominant wear mechanism during machining both superalloys with the investigated cutting parameters. Varying extents of abrasive tool wear during cutting of the two alloys are therefore the likely reason for the different wear rates. In connection to that, significantly larger quantities of hard phases, specifically primary MC-type carbides and TiN-inclusions were found in the Alloy 718 workpiece which can explain the faster flank wear progression during machining this alloy.
Electron microscopy
Sliding wear
High temperature
Cutting tools
Superalloys
Micro-scale abrasion
Författare
Philipp Hoier
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Amir Malakizadi
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Pietro Stuppa
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Stefan Cedergren
GKN Aerospace Sweden
Uta Klement
Chalmers, Industri- och materialvetenskap, Material och tillverkning
Wear
0043-1648 (ISSN)
Vol. 400-401 184-193Ämneskategorier
Tribologi
Materialteknik
Bearbetnings-, yt- och fogningsteknik
Styrkeområden
Produktion
Materialvetenskap
DOI
10.1016/j.wear.2018.01.011