Distributed channel prediction for multi-agent systems
Paper i proceeding, 2017

Multi-agent systems (MAS) communicate over a wireless network to coordinate their actions and to report their mission status. Connectivity and system-level performance can be improved by channel gain prediction. We present a distributed Gaussian process regression (GPR) framework for channel prediction in terms of the received power in MAS. The framework combines a Bayesian committee machine with an average consensus scheme, thus distributing not only the memory, but also computational and communication loads. Through Monte Carlo simulations, we demonstrate the performance of the proposed GPR.


V.P. Chowdappa

Universitat de Valencia

Markus Fröhle

Chalmers, Signaler och system, Kommunikations- och antennsystem, Kommunikationssystem

Henk Wymeersch

Chalmers, Signaler och system, Kommunikations- och antennsystem, Kommunikationssystem

Carmen Botella Mascarell

Universitat de Valencia

2017 IEEE International Conference on Communications, ICC 2017, Paris, France, 21-25 May 2017

1550-3607 (ISSN)

High precision positioning for cooperative ITS applications

Europeiska kommissionen (Horisont 2020), 2015-01-01 -- 2017-12-31.

COPPLAR CampusShuttle cooperative perception & planning platform

VINNOVA, 2016-01-01 -- 2018-12-31.

Multi-technology positioning professionals (MULTI-POS)

Europeiska kommissionen (FP7), 2012-10-01 -- 2016-09-30.





Mer information

Senast uppdaterat