Electroosmotic dewatering of cellulose nanocrystals
Artikel i vetenskaplig tidskrift, 2018

One of the main challenges for industrial production of cellulose nanocrystals is the high energy demand during the dewatering of dilute aqueous suspensions. It is addressed in this study by utilising electroosmotic dewatering to increase the solid content of suspensions of cellulose nanocrystals. The solid content was increased from 2.3 up to 15.3 wt%, i.e. removal of more than 85% of all the water present in the system, at a much lower energy demand than that of thermal drying. Increasing the strength of the electric field increased not only the dewatering rate but also the specific energy demand of the dewatering operation: the electric field strength used in potential industrial applications is thus a trade-off between the rate of dewatering and the energy demand. Additionally, it was fo und that high local current intensity had the potential of degrading cellulose nanocrystals in contact with the anode. The maximum strength of the electric field applied should therefore be limited depending on the equipment design and the suspension conditions.

Solid–liquid separation

Cellulose nanocrystals

Nanocellulose

Energy demand

Electroosmotic dewatering

Författare

Jonas Wetterling

Wallenberg Wood Science Center (WWSC)

Chalmers, Kemi och kemiteknik, Kemiteknik, Skogsindustriell kemiteknik

Karin Sahlin

Chalmers, Kemi och kemiteknik, Kemi och biokemi, Organisk kemi

Wallenberg Wood Science Center (WWSC)

Tuve Mattsson

Chalmers, Kemi och kemiteknik, Kemiteknik, Skogsindustriell kemiteknik

Wallenberg Wood Science Center (WWSC)

Gunnar Westman

Wallenberg Wood Science Center (WWSC)

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Hans Theliander

Wallenberg Wood Science Center (WWSC)

Chalmers, Kemi och kemiteknik, Kemiteknik, Skogsindustriell kemiteknik

Cellulose

0969-0239 (ISSN)

Vol. 25 4 2321-2329

Ämneskategorier

Energiteknik

Annan naturresursteknik

Energisystem

DOI

10.1007/s10570-018-1733-3

Mer information

Senast uppdaterat

2021-02-11