Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems
Artikel i vetenskaplig tidskrift, 2018

Realizing strong coupling between a single quantum emitter (QE) and an optical cavity is of crucial importance in the context of various quantum optical applications. Although Rabi splitting of single quantum emitters coupled to high-Q classical cavities has been reported in numerous configurations, attaining single emitter Rabi splitting with a plasmonic nanostructure remains a challenge. In particular, strong coupling at the single QE regime would open the path for the realization of single-photon nonlinearities. In this paper, we derive a plasmon quantization procedure for systems consisting of a single QE located in the gap of a nanoantenna. This procedure leads to the description of the quantum dynamics by a master equation for the state of the QE and the quantized plasmonic modes, which is crucial to demonstrate the emergence of single-photon nonlinearities. We investigate numerically the optical response and the resulting Rabi splitting in metallic nanoantennas and find the optimal geometries for the emergence of the strong-coupling regime with single QEs. Finally, we demonstrate the saturation of hybridized modes for a chosen configuration. Our results will be useful for implementation of realistic quantum plasmonic nanosystems involving single QEs at room temperature.

Författare

Benjamin Rousseaux

Chalmers, Fysik, Bionanofotonik

Denis Baranov

Göteborgs universitet, Institutionen för fysik

Mikael Käll

Chalmers, Fysik, Bionanofotonik

Timur Shegai

Chalmers, Fysik, Bionanofotonik

Göran Johansson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Tillämpad kvantfysik

PHYSICAL REVIEW B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 98 4 045435

Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur

Vetenskapsrådet (VR), 2017-01-01 -- 2022-12-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PHYSREVB.98.045435

Mer information

Senast uppdaterat

2018-08-29