Realizability improvements to a hybrid mixture-bubble model for simulation of cavitating flows
Artikel i vetenskaplig tidskrift, 2018

Cavitating multi-phase flows include an extensive range of cavity structures with different length scales, from micro bubbles to large sheet cavities that may fully cover the surface of a device. To avoid high computational expenses, incompressible transport equation models are considered a practical option for simulation of large scale cavitating flows, normally with limited representation of the small scale vapour structures. To improve the resolution of all scales of cavity structures in these models at a moderate additional computational cost, a possible approach is to develop a hybrid Eulerian mixture -Lagrangian bubble solver in which the larger cavities are considered in the Eulerian framework and the small (sub-grid) structures are tracked as Lagrangian bubbles. A critical step in developing such hybrid models is the correct transition of the cavity structures from the Eulerian mixture to a Lagrangian discrete bubble framework. In this paper, such a multi-scale model for numerical simulation of cavitating flows is described and some encountered numerical issues for Eulerian–Lagrangian transition are presented. To address these issues, a new improved formulation is developed, and simulation results are presented that show the issues are overcome in the new model.

Cavitating Flow

Multi-scale model

Disperse multiphase flow

Författare

Ebrahim Ghahramani

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Mohammad Hossein Arabnejad Khanouki

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Rickard Bensow

Chalmers, Mekanik och maritima vetenskaper, Marin teknik

Computers and Fluids

0045-7930 (ISSN)

CaFE

Europeiska kommissionen (Horisont 2020), 2015-01-01 -- 2019-01-01.

Styrkeområden

Transport

Energi

Ämneskategorier

Teknisk mekanik

Energiteknik

Strömningsmekanik och akustik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1016/j.compfluid.2018.06.025

Mer information

Senast uppdaterat

2018-08-23