Stochastic spatio-temporal model for wind speed variation in the Arctic
Artikel i vetenskaplig tidskrift, 2018
In this study, these models are further developed and validated to properly describe the variation of wind speeds in the Arctic area. In most locations, the transformed Gaussian field is a sufficiently accurate model. However, in some regions, e.g., the Laptev and Beaufort Seas, this model severely underestimates the frequencies of extreme wind speeds. Therefore, the hybrid model is further improved to add Poisson distributed random storm events to describe the wind variation in these regions, and is named as the Poisson hybrid model. There are also locations, e.g., along the east coast of Greenland, where the frequencies of high wind speeds are severely overestimated by the transformed Gaussian model. It is shown that this model can be used to estimate the long-term distribution of wind speeds, predict extreme wind speeds and simulate the spatio-temporal wind fields for practical applications.
Wind speed
Spatio-temporal wind statistics
Hermite transformation
Exponential transformation
The Arctic
Extreme wind
Poisson hybrid model
Gaussian field
Författare
Wengang Mao
Chalmers, Mekanik och maritima vetenskaper, Marin teknik
Igor Rychlik
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Ocean Engineering
0029-8018 (ISSN)
Vol. 165 1 237-251Stokastiska modeller för vind- och våglaster
Vetenskapsrådet (VR) (2012-6004), 2012-01-01 -- 2015-12-31.
Utforska innovativa lösningar för arktisk sjöfart
STINT (Dnr:CH2016-6673), 2017-05-01 -- 2020-06-30.
Styrkeområden
Informations- och kommunikationsteknik
Transport
Energi
Drivkrafter
Hållbar utveckling
Fundament
Grundläggande vetenskaper
Ämneskategorier (SSIF 2011)
Farkostteknik
Oceanografi, hydrologi, vattenresurser
Sannolikhetsteori och statistik
DOI
10.1016/j.oceaneng.2018.07.043