Determination of the Apparent Viscosity of Dense Gas-Solids Emulsion by Magnetic Particle Tracking
Övrigt konferensbidrag, 2018

When designing fluidised bed units a key to ensure efficient conversion is proper control of the mixing of the fuel in both lateral and axial directions in the bed. In order to mechanistically describe the mixing of fuel particles in a fluidised bed, there is a need to determine the apparent viscosity of the
gas-solids emulsion, which determines the drag on the fuel particles.
In this work the apparent viscosity of a bed of spherical glass beads and air at minimum fluidisation was determined by means of the falling sphere method. Hereto the drag of the bed on a single immersed object was obtained by measuring the velocity of a negatively buoyant tracer with magnetic
particle tracking (MPT). MPT allows for highly temporally and spatially resolved trajectories (10-3 s and 10-3 m, respectively) in all 3-dimensions. The bed consisted of glass beads with a narrow size distribution (215 to 250 μm) and tracers with a size from 5 to 20 mm and densities from 4340 to 7500
kg/m3 were used. Hence, the literature, which typically covers data for velocities lying within or just above the Stoke flow regime (0.002 < Re < 2.0) could be expanded to Re numbers (53 to 152) well within the transition flow regime. The drag and apparent viscosity was compared to different fluid
models and agreed well with the Newtonian model, when taking into account possible effects of the bed walls. Comparing the drag coefficient of data of free falling spheres and data of spheres falling with controlled velocities, the latter showed a dependence on the product of tracer diameter and
falling velocity, dput, while the former was constant over dput. This indicates the method with controlled falling velocities to be intrusive and influencing the result of the apparent viscosity of the bed. Using the free falling sphere method this work obtained an apparent viscosity of 0.24 Pa s, which is
consistent with values found in earlier literature for an emulsion of air and sand of similar size and density.

magnetic particle tracking

apparent viscosity

falling sphere method

drag coefficient


Anna Köhler

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

David Pallarès

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

Filip Johnsson

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

23rd International Conference on Fluidized Bed Conversion
Seoul, South Korea,

Ökad prestanda vid termisk omvandling av biomassa

Energimyndigheten (38347-2), 2017-05-02 -- 2019-10-30.


Hållbar utveckling



Strömningsmekanik och akustik

Mer information

Senast uppdaterat