Characterization of abrasion- and dissolution-induced tool wear in machining
Artikel i vetenskaplig tidskrift, 2019

In the present work, a comparative study is reported on tool wear characteristics induced by machining two
distinctively different types of materials: Vanadis 10 tool steel containing large amounts of MC and M7C3 carbides,
and 316L austenitic stainless steel which is nearly free of hard abrasive phases. Tool life tests were
conducted using cemented tungsten carbide tools (WC-Co), both uncoated and TiCN-Al2O3 coated. The subsequent
wear characterization included scanning electron microscopy and electron backscatter diffraction
(EBSD). Examination of worn WC-Co substrates and coatings revealed significantly different wear characteristics
after machining the two workpiece materials. Predominantly abrasion-induced wear was revealed by microfragmented
tool constituents as well as sub-micron sized grooves and ridges on tool substrates and coatings when
machining the tool steel. Moreover, EBSD analysis indicated that the tool substrates exhibited significant superficial
strains caused by localized plastic deformation during sliding contact of the tools with the carbides of
the tool steel. In contrast, during machining of the stainless steel using uncoated tools, the predominantly dissolution-
induced wear resulted in WC-Co substrates with smooth surfaces and absence of significant strain. The
worn coatings showed signs of spalling of micro-fragments which indicated the dominant contribution of adhesive
wear when machining stainless steel.

Tool wear Abrasion Dissolution Metal cutting Electron microscopy EBSD


Philipp Hoier

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Amir Malakizadi

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Uta Klement

Chalmers, Industri- och materialvetenskap, Material och tillverkning

Peter Krajnik

Chalmers, Industri- och materialvetenskap, Material och tillverkning


0043-1648 (ISSN)

Vol. 426-427 1548-1562


Produktionsteknik, arbetsvetenskap och ergonomi

Bearbetnings-, yt- och fogningsteknik

Tillförlitlighets- och kvalitetsteknik

Metallurgi och metalliska material






Mer information

Senast uppdaterat