High frequency noise characterisation of graphene field-effect transistors at different temperatures
Poster (konferens), 2019

Graphene is a promising material for high frequency electronics applications thanks to its intrinsically high carrier mobility and velocity, and graphene transistors are continuously pushed toward higher operating frequencies [1]. For high frequency low noise amplifiers, it is important to evaluate the noise
parameters of the graphene field-effect transistors (GFETs). In this work, we present the noise performance of the GFETs made of chemical vapour deposition (CVD) in the frequency and temperature ranges of 2-18 GHz and -60-25 C. The noise figure with 50 Ohm impedance termination (F50) was
measured using the cold-source method and then the minimum noise figure (Fmin) was estimated using the Pospieszalski’s noise model [2, 3]. In Fig. 1 and Fig. 2, the Fmin of a GFET with a gate length of 0.5 μm as a function of the frequency (f) and drain voltage (Vd) at different temperatures are shown. This GFET revealed maximum frequency of oscillation (fmax) of 18 and 21 GHz at 25 and -60 °C, respectively. It can be seen from Fig. 1, that the Fmin at 8 GHz is approx. 2 dB lower than that of the previously published CVD GFETs and comparable with that of the best published SiC GFETs [4, 5]. The Fmin decreases significantly with temperature down to 0.3 dB at 8 GHz, competing with Si CMOS [6]. It can be seen from Fig. 2, that Fmin decreases with the Vd and saturates above approx. 1 V, where GFETs operate in the velocity saturation mode [1]. Analysis of the dependences allows for further development of the GFETs for advanced low noise amplifiers.

graphene field-effect transistors

low noise amplifiers

Författare

Junjie Li

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Xinxin Yang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Marlene Bonmann

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Muhammad Asad

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Andrei Vorobiev

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Jan Stake

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Luca Banszerus

RWTH Aachen University

Christoph Stampfer

RWTH Aachen University

Martin Otto

AMO

Daniel Neumaier

AMO

Graphene Week 2019
Helsinki, Finland,

Styrkeområden

Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik (2010-2017)

Infrastruktur

Kollberglaboratoriet

Nanotekniklaboratoriet

Drivkrafter

Hållbar utveckling

Ämneskategorier

Elektroteknik och elektronik

Mer information

Skapat

2019-10-28