ELEMENT-LOCAL STRESS RECOVERY IN LINEAR SHELLS
Övrigt konferensbidrag, 2019
However, in [1] the stress recovery technique was based on a non-local super-convergent patch polynomial fit, which is not suitable for a user LS-DYNA implementation as non-local information is hard to obtain. Instead we aim to utilize the Extended 2D recovery technique by Rolfes and colleagues [2], [3]. A known drawback with this technique is that the recovery of the transverse normal stress, which is made from the in-plane derivatives of the shear force, requires quadratic approximation of the out-of-plane displacements. Again, this is not suitable for our user element implementation in LS-DYNA, which we choose to base on a solid shell formulation with linear approximation due to numerical efficiency.
Several authors have presented alternatives to estimate the transverse normal stress in linear shell elements, e.g. by neglecting shear forces [4] or making an assumption on the ratio of the shear force variation [5]. In this contribution we will examine the possibility to utilise the transverse normal stress from the FE-solution, available when using solid shell elements. We will benchmark this approach in a range of geometries with different modelling resolutions. If successful, our methodology will feature an element-wise stress recovery technique capable of estimating all transverse stresses even using a linear element. In the long run the methodology can enable computationally efficient simulations of delamination failure in composite structures and help to develop crash structures made of laminated FRP.
References
[1] J. Främby, M. Fagerström, and J. Brouzoulis, Int. J. Numer. Methods Eng., vol. 112, no. 8, pp. 882–908, Nov. 2017.
[2] R. Rolfes and K. Rohwer, Int. J. Numer. Methods Eng., vol. 40, pp. 51–60, 1997.
[3] R. Rolfes, K. Rohwer, and M. Ballerstaedt, Comput. Struct., vol. 68, no. 6, pp. 643–652, Sep. 1998.
[4] R. Roos, G. Kress, and P. Ermanni, Compos. Struct., vol. 81, no. 3, pp. 463–470, 2007.
[5] R. Tanov and A. Tabiei, Compos. Struct., vol. 76, no. 4, pp. 338–344, 2006.
Författare
Johannes Främby
Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik
Martin Fagerström
Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik
Henrik Molker
Volvo Cars
Girona, Spain,
Modellering av krockbeteendet i framtida lättviktsfordon
VINNOVA (2012-03673), 2013-01-01 -- 2015-12-31.
VINNOVA (2016-04239), 2017-01-01 -- 2020-03-31.
Styrkeområden
Transport
Materialvetenskap
Ämneskategorier (SSIF 2011)
Teknisk mekanik
Beräkningsmatematik
Farkostteknik
Kompositmaterial och -teknik
Infrastruktur
C3SE (Chalmers Centre for Computational Science and Engineering)