Quantum Acoustics with Surface Acoustic Waves
Kapitel i bok, 2016

It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this chapter, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.

lithium tantalate,

electrical transmission line,

surface acoustic wave,

electric resonance,

semiclassical model,

Författare

Thomas Aref

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Per Delsing

Kvantteknologi

Maria Ekström

Kvantteknologi

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Martin Gustafsson

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Columbia University

Göran Johansson

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Peter Leek

University of Oxford

Einar Magnusson

University of Oxford

Riccardo Manenti

University of Oxford

Superconducting Devices in Quantum Optics

217-244
978-3-319-24091-6 (ISBN)

Studier av propagerande akustiska vågor på en-fonon-nivå

Vetenskapsrådet (VR) (2011-4295), 2012-01-01 -- 2014-12-31.

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Fundament

Grundläggande vetenskaper

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1007/978-3-319-24091-6_9

Mer information

Senast uppdaterat

2022-03-30