All modular forms of weight 2 can be expressed by Eisenstein series
Artikel i vetenskaplig tidskrift, 2020

We show that every elliptic modular form of integral weight greater than 1 can be expressed as linear combinations of products of at most two cusp expansions of Eisenstein series. This removes the obstruction of nonvanishing central L -values present in all previous work. For weights greater than 2, we refine our result further, showing that linear combinations of products of exactly two cusp expansions of Eisenstein series suffice.

Vector-valued Hecke operators

Central values of L -functions

Products of Eisenstein series

Författare

Martin Raum

Chalmers, Matematiska vetenskaper, Algebra och geometri

Jiacheng Xia

Chalmers, Matematiska vetenskaper, Algebra och geometri

Research in Number Theory

23639555 (eISSN)

Vol. 6 3 32

Real-analytiska ortogonala modulära former som genererande serier

Vetenskapsrådet (VR) (2019-03551), 2020-01-01 -- 2023-12-31.

Siegel modulära genererande funktioner

Vetenskapsrådet (VR) (2015-04139), 2016-01-01 -- 2019-12-31.

Ämneskategorier (SSIF 2011)

Algebra och logik

Diskret matematik

Matematisk analys

DOI

10.1007/s40993-020-00207-z

Mer information

Senast uppdaterat

2020-09-01